INTRODUCTION

This is one of the 4 courses designed for Semester 1 of Bachelor of Information Technology Degree program.

CREDITS: 03

LEARNING OUTCOME

After successfully completing this module you will be able to:

☐ Describe fundamental concepts and trends that provide the context of Systems Analysis and Design methods and to apply the techniques practically to analyze and design an information system.

OUTLINE OF SYLLABUS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Minimum number of hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Information System Environment</td>
<td>02</td>
</tr>
<tr>
<td>☐ System Development Life Cycle</td>
<td>02</td>
</tr>
<tr>
<td>☐ Scope Definition and Problem Analysis Phases</td>
<td>02</td>
</tr>
<tr>
<td>☐ Requirements Analysis and Logical Design Phase</td>
<td>08</td>
</tr>
<tr>
<td>☐ Modeling Methods</td>
<td>16</td>
</tr>
<tr>
<td>☐ The Decision Analysis Phase</td>
<td>04</td>
</tr>
<tr>
<td>☐ System Design</td>
<td>07</td>
</tr>
<tr>
<td>☐ Project Management</td>
<td>02</td>
</tr>
<tr>
<td>☐ Automated Tools and Technology</td>
<td>02</td>
</tr>
<tr>
<td>Lectures</td>
<td>45</td>
</tr>
<tr>
<td>Total for the subject</td>
<td>45</td>
</tr>
</tbody>
</table>
REQUIRED MATERIALS

Main Reading:

Supplementary Reading:

DETAILED SYLLABUS

1. Introduction to Information System Environment (2hrs.)

Instructional Objectives

- Identify the problems in legacy systems
- Identify the various types of Information Systems and list their characteristics
- Recognize the various two types of processing modes

Material/Sub Topics

1.1 Information Systems (Ref 1 p7–p16)
 1.1.1 Stakeholders: Systems users, Systems owners, Systems designers, Systems builders, Systems analysts
 1.1.2 Legacy Systems (Refer Learning material)
1.2 Types of Information Systems (Ref 1 p6-p7)
 1.2.1 Transaction Processing System
 1.2.2 Management Information System
 1.2.3 Decision Support System
 1.2.4 Executive Information Systems
 1.2.5 Expert Systems
 1.2.6 Communications and collaboration Systems
 1.2.7 Office Automation Systems
1.3 Architecture based classification of Information Systems (Ref 1 p483 -p494)
 1.3.1 Centralized Systems
 1.3.2 Distributed Systems
 1.3.2.1 File server architecture
 1.3.2.2 Client-server architecture
 1.3.2.3 Internet based architecture
1.4 Processing Types (Ref 1 p584)
 1.3.1 Batch Processing
 1.3.2 Online Processing
2. System Development Life Cycle (SDLC) (2hrs.)

Instructional Objectives

☐ State the importance of SDLC in System Development
☐ Describe the phases of a Sequential SDLC
☐ State the importance of an iterative life cycle
☐ Identify general principles behind all System Development Methodologies
☐ Outline the major components of the systems development

Material /Sub Topics

2.1 Sequential development approach (Ref 1 p89–p91, Refer Learning material)
 2.1.1 Sequential development Phases
 2.1.2 Problems with waterfall development approach
 2.1.3 Modified waterfall model
2.2 Iterative development approach (Ref1 p92)
2.3 Systems Development
 2.3.1 Underlying Principles for Systems Development (Ref1 p72-p76)
 2.3.2 Major components of System Development (Refer Learning material)
 2.3.2.1 Methodologies
 2.3.2.2 Modeling Methods
 2.3.2.3 Tools
 2.3.3 Life cycle Vs. Methodology (Ref1 p70-p71)

3. Scope Definition and Problem Analysis Phases (2hrs.)

Instructional Objectives

☐ Define problems, opportunities and directives
☐ Describe the scope definition in terms of data, business processes
☐ Describe the project plan in terms of scale, development strategy, schedule, resource requirements and budget.

Material /Sub Topics

3.1 The Scope Definition phase (Ref1 p167)
 3.1.1 Identify Baseline Problems and opportunities (Ref1 p169-p172)
 3.1.2 Negotiate Baseline Scope (Ref1 p172)
 3.1.3 Assess baseline project worthiness (Ref1 p173)
 3.1.4 Develop baseline schedule and budget (Ref1 p173)
 3.1.5 Communicate the project plan (Ref1 p173-p174)
3.2 The Problem Analysis phase (Ref1 p174-p175)
 3.2.1 Understand the problem domain (Ref1 p175-p180)
 3.2.2 Analyze problems and opportunities (Ref1 p180)
 3.2.3 Analyze business proposal (Ref1 p180-p182)
 3.2.4 Establish system Improvement objectives (Ref1 p182-p183)
 3.2.5 Update or refine the project plan (Ref1 p183)
 3.2.6 Communicate findings and recommendations (Ref1 p183-p184)

4. Requirements Analysis and Logical Design Phase (08 hrs.)

Instructional Objectives

- Describe the importance of communication skills for gathering requirements for systems development
- Distinguish between the user desires and user requirements
- Identify different fact gathering techniques and list the advantages and disadvantages of each
- Describe business requirements using system models that illustrate data structure, business processes, data flows.
- Illustrates the typical tasks of the logical design phase.

Material /Sub Topics

4.1. Identifying Requirements (Ref1 p208-p234)
 4.1.1. Process of requirement Discovery
 4.1.1.1 Requirements discovery
 4.1.1.2 Documenting and analyzing requirements
 4.1.1.3 Requirements management
 4.1.2. Fact finding techniques
 4.1.2.1 Sampling of existing documentation
 4.1.2.2 Research and site visits
 4.1.2.3 Observation of the work environment
 4.1.2.4 Questionnaires
 4.1.2.5 Interviews
 4.1.2.6 Prototyping
 4.1.2.7 Joint Requirements Planning

4.2 logical Design Phase (p189 - 192)
 4.2.1 Structure functional requirements (p191 - 192)
 4.2.2 Prototype functional requirements (p192)
 4.2.3 Validate functional requirements (p192)
 4.2.4 Define acceptance test cases (p192)
5. Modeling Methods (16 hrs.)

Instructional Objectives

- Identify the differences among process modeling, data modeling, and object modeling
- Identify the components of modeling methods; Data Flow diagrams, Entity Relationship Diagrams
- Describe the usage of modeling methods
- Identify the errors of an example diagram of a modeling method.
- Apply process modeling and data modeling in analyzing a system based on a given scenario.

Material /Sub Topics

5.1 Process Modeling (Ref1 p316-p360)
 5.1.1 Introduction to process modeling
 5.1.1.1 Logical models
 5.1.1.2 Physical models
 5.1.2 Data Flow Diagrams
 5.1.3 Functional Decomposition Diagrams
 5.1.4 Event diagrams
 5.1.5 Process Descriptions
 Structured English, Decision Tables, Decision Trees

5.2 Data Modeling (Ref1 p270-p283)
 5.2.1 Entities
 5.2.2 Attributes
 5.2.3 Relationships

5.3 Synchronization of System Models (Ref1 p359-p360)

5.4 Object Modeling (Ref1 p370-p382)

6. The Decision Analysis Phase (4hrs.)

Instructional Objectives

- State the importance of the feasibility study
- Identify candidate solutions, analyze those candidate solutions, and recommend a target system that will be designed, constructed and implemented.
- Identify typical tasks of the decision analysis phase.
- Identify the different tests used for feasibility
- List the methods of analyzing the feasibility of Candidate systems
- Identify the important concepts of writing reports and presentations

Material /Sub Topics

6.1 The decision analysis phase (Ref1 p192-p199)
 6.1.1 Identify candidate solution (Ref1 p194-p195)
 6.1.1.1 Feasibility Analysis and the system proposal (Ref1 p414-p417)
 6.1.2 Analyze candidate solutions (Ref1 p195-p197)
 6.1.2.1 Tests for Feasibility (Ref1 p417-p419)
 6.1.2.1.1. Operational Feasibility 6.1.2.1.2..
 Cultural (or political) feasibility
 Technical Feasibility
 Schedule Feasibility
 Economic Feasibility
Cost benefit analysis techniques (Ref1 p419-p426)
Legal Feasibility

6.1.3. Compare candidate solutions(Ref1 p197)
6.1.3.1. Feasibility analysis of candidate systems (Ref1 p426-p430)
Candidate systems matrix
Feasibility analysis matrix
6.1.4. Update project plan (Ref1 p197)
6.1.5. Recommend a system proposal (Ref1 p197-p198)
6.1.5.1. Written report (Ref1 p431-p433)
6.1.5.2. Formal presentation (Ref1 p433-p437)

7. System Design (7hrs.)

Instructional Objectives

☐ Apply the modeling method to a given scenario in order to produce appropriate diagrams and justify your decisions.
☐ Identify and Differentiate between different System Design approaches.
☐ Describe the design phase tasks in terms of a computer based solution for a given system development project.
☐ Differentiate between logical and physical data flow diagrams.

Material /Sub Topics

7.1 Introduction to system design (Ref1 p446- p453)
7.2 System Design Approaches (Ref1 p446- p453)
 7.2.1 Modern Structured Design - Structure Charts
 7.2.2 Information engineering
 7.2.3 Prototyping
 7.2.4 Joint Application Development (JAD)
 7.2.5 Rapid Application Development (RAD)
 7.2.6 Object Oriented Design
7.3 Application Architecture and Modeling (Ref1 p476-p502)
 7.3.1 Physical Data Flow Diagrams
 7.3.2 Information Technology Architecture

8. Project Management (2hrs.)

Instructional Objectives

☐ Describe the causes for failure of a given information system and/or technology projects
☐ Describe the basic functions of project management
☐ Differentiate between PERT and Gantt charts as project management tools
☐ Draw a Gantt chart for a given project schedule
Material /Sub Topics

8.1 What is Project Management? (Ref1 p119- p121)
8.2 Causes of failed projects (Ref1 p121- p123)
8.3 Project manager competencies (Ref1 p123- p124)
8.4 Project management functions (Ref1 p124- p125)
8.5 Project management tools and techniques (Ref1 p125)
 8.5.1 PERT charts
 8.5.2 Gantt charts
8.6 Project management software (Ref1 p125- p127)

9. Automated Tools and Technology (2hrs.)

- Identify the functionalities of the different types of automated tools available for development of IS
- Explain Computer Aided Systems Engineering (CASE) & CASE tools, and their benefits

Material /Sub Topics

9.1 Computer Assisted Systems Engineering (Ref1 p107- p109)
 9.1.1 CASE Repositories
 9.1.2 CASE facilities
 - Diagramming tools, Dictionary tools, Design tools, Quality management tools,
 Documentation tools, Design and Code generator tools, Testing tools
 9.1.3 Forward and Reverse Engineering
9.2 Application Development Environments (Ref1 p109- p111)
9.3 Process and Project Management Tools (Ref1 p111)
9.4 Benefits of using CASE tools in Systems Development (Refer Learning material)

PLATFORM / TUTORIALS

No Practical required